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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MEMORANDUM 2-13-59A

THE SYNTHESIS OF OPTIMUM HOMING _ISSILE GUIDANCE

SYSTEMS WITH STATISTICAL INPUTS

By Elwood C. Stewart and Gerald L. Smith

SUMMARY

An analytical approach is presented which is applicable to the

optimization of homing navigation guidance systems which are forced to

operate in the presence of radar noise. The two primary objectives are

to establish theoretical minimum miss distance performance and a method

of synthesizing the optimum control system. The factors considered are:

(i) target evasive maneuver, (2) radar glint noise, (3) missile mm_euver-

ability, and (4) the inherent time-varying character of the kinematics.

Two aspects of the problem are considered. In the first, consider-

ation is given only to minimization of the miss distance. The solution

given cannot be achieved in practice because the required accelerations

are too large. In the second_ results are extended to the practical

case where the limited acceleration capabilities of the missile are con-

sidered by placing a realistic restriction on the mean-square acceleration

so that system operation is confined to the linear range.

Although the exact analytical solution of the latter problem does

not appear feasible; approximate solutions utilizing time-varying control

systems can be found. One of these solutions - a range multiplication

type control system - is studied in detail. It is shown that the minimum
obtainable miss distance with a realistic restriction on acceleration is

close to the absolute minimum for unlimited missile maneuverability.

Furthermore, it is shown that there is an equivalence in performance

between the homing and beam-rider type guidance systems. Consideration

is given to the effect of changes in target acceleration, noise magnitude,

and missile acceleration on the minimum miss distance.

INTRODUCTION

The wide application of homing guidance principles in missile systems

poses an important question to the missile designer of what performance

can be expected of a homing missile attacking a target. Of even greater

importance is knowing how to synthesize a missile control system to

achieve this optimum performance. The purpose of this report is to present

a method whereby answers to these questions can be obtained.



The factors which affect missile system performance are so numerous,
diverse_ and often interrelated that all of them cannot be handled simul-
taneously. Nevertheless, there are certain aspects which are considered
so essential to the realization of meaningful results that they cannot be
ignored. The basic factors which it is believed must be included in the
present homing problem are: (i) target maneuvers, (2) glint noise, (3)
missile maneuverability, and (4) the inherent time-varying character of
the kinematics. There are other aspects of the problem which are not
considered_ these either are not of fundamental importance to the problem
or they must be handled by independent meats. In this category are such
factors as the three-dimensional aspect of the problem and the radar blind
range of active radars. Thus the problem _e wish to solve can be stated
quite simply as follows: synthesize a homing guidance system which will
produce minimummiss distance whenoperating under known conditions of
target maneuver_glint noise, missile maneuverability, and time-varying
kinematics.

There are two possible approaches. The usual solution of this problem
is based on a cut-and-try approach_ in which different control systems are
simulated on an analog computer and parameters are varied in an attempt
to find the best performance. There are sc manypossibilities to be
investigated_ however, that there is little chance of finding the best of
all systems in this manner, although such studies can yield insight into
the character of the problem.

A second approach is to leave the control system unspecified at the
outset and to determine both the form and the coefficients of the system
by a synthesis method. Such an approach is exemplified by the pioneering
work of Wiener. Three principal ass_nptiors madein the Wiener theory
are: (i) the inputs can be represented by stationary randomtime series,
(2) the system is linear, and (3) the system is time invariant. There
are manyproblems which can be formulated _ithout violating these assump-
tions, and to these problems the Wiener theory is applicable. An important
example is the beam-rider guidance problem; the optimization of such a
system has been reported on in reference i. There are, however_ many
problems which cannot be described without violating one or more of these
assumptions. In the homing problem to be considered here_ previous theory
cannot be applied because the problem is essentially a time-varying one.
The reason is that guidance of the homing nissile is accomplished by
employing line-of-sight measurementswhich involve a time-varying range
between missile and target. Consequently, the purpose of this report will
be to consider the optimization of the homing system by including the time-
varying range simultaneously with the target maneuver_noise, and missile
maneuvering capability. Wewill be concerted with both the synthesis of
the optimumhoming system and the establiskment of minimumtheoretical miss
distances.

The first part of the report provides the background and formulation
of the problem. The second part treats the synthesis of the optimumhoming
system whenthe effect of practical missile maneuvering capabilities



is temporarily ignored. This step provides a natural transition to the
next section in which the finite missile maneuverability is taken into
account. Finally, the method is illustrated in the last two sections
where specific systems are derived.

IMPORTANTSYMBOLS

aT acceleration of target perpendicular to reference line

co impulse response of optimum control system

k twice the average switching rate of target acceleration, i/sec

ft/sec 2
ka aerodynamic gain, radian

L Laplace transform operation

N noise magnitude or zero frequency noise spectral density,

ft 2

radian/sec

R range between missile and target, ft

s variable in the Laplace transform

T time at collision point, sec

TN time constant of the noise spectrum shaping filter, sec

VM missile velocity magnitude, ft/sec

VR relative velocity between missile and target in the direction

of the line of sight, ft/sec

VT target velocity magnitude_ ft/sec

w o impulse response of optimum control system and aerodynamics

combination

YM missile displacement perpendicular to reference line, ft

IN apparent target displacement from true target center due to

noise, ft

YT target displacement perpendicular to reference line_ ft

Yd perturbation in missile velocity vector, radians

control-surface deflection_ radians
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c

eN

cT

ha

error between target and missile p_sition, yT-YM_ ft

component of error _ due to noise_ ft

component of error c due to targ_t maneuver_ ft

perturbation in apparent line of sLght between missile and

target_ radians

spectral density of total input signal

ft 2

_N spectral density of noise displace nent YN, radian/sec

ft 2

@T spectral density of target displacement YT, radian/sec

angular frequency, radians/sec

( ) ensembleaverageof ( I

PROBLEM FORMULATION

Geometry

It is widely accepted that the ideal attack course is one for which

the line of sight from missile to target doe_ not rotate. Such a course

is called constant true bearing, or CTB. This course is especially

desirable because it is the only course whic_ never requires lateral

acceleration of the missile greater than tha_ of the target. However,

the ideal CTB course cannot be achieved in p_actice because of time lags

in the missile system. Furthermore_ information about the target is

obscured by noise so that the real target position is never known pre-

cisely. For these reasons the best any missille can be expected to do is

to fly a reasonable approximation to CTB. Tlus in formulating the problem

analytically_ one is led naturally to a representation of the target and

missile maneuvers as perturbations from a CTI_ course.

In the derivation of the homing system _quations three simplifying

basic assumptions are made which can be summarized as follows:

i. Coplanar attack.- Target and miss_.le maneuvers are assumed to

occur entirely in a plane, which will be t_en as the horizontal plane

for simplicity. An alternative assumption - which amounts to the same

thing - is that the pitch and yaw control _hannels operate without

mutual interaction, so that the components of motion in one plane can

be considered independently of motions in _he other plane. One or

the other of these assumptions can be expedited to apply reasonably

well to a large number of realistic cases.
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2. Constant missile and target velocity magnitudes VM and VT.-

This assumption is usually a reasonable approximation to most real cases

where velocities are not constant. This is because, as will be sho_a_
only the last few seconds of flight need be considered in determination

of miss distance_ during which time velocity magnitude changes are

usually small.

3- Small angle approximation.- The perturbations of the line-of-

sight angle and missile and target heading angles are assumed to be

small enough to permit linearization of the geometry. The validity of

this assumption will be exa_mined in detail later in the report.

If the target does not maneuver, the second of these assumptions

reduces the CTB course to a straight line. Since the target flight path

is also a straight line under these circumstances; the entire attack

situation can then be represented by a simple coplanar diagram of straight

lines, as indicated in figure i. This diagram makes a convenient reference

for the homing problem equations. The line of sight is designated as the

x axis; with the origin at the missile, and the entire reference system

moves with constant velocity magnitude, VM. Target and missile maneuvers
and noise are then regarded as small perturbations from this coordinate

system 3 occurring entirely within the plane of the straight-line CTB

diagram. The complete geometry can thus be represented as in figure 13

where it can be seen that the angle between the apparent and reference
lines of sight is

-i YT-YM+Y_
ha = tan

R

Since range is approximately equal to XT-X M
small, this equation is simplified to

YT-YM+Y_
ha =

xT-xM

Also, in figure i it can be seen that

(la)

and since ha is assumed

(lb)

xT-xM = -VTcos(_o+_a)-VMcos(7o+_d) (2a)

which can be simplified because of the assumption of small perturbations
to

XT-XM : -VTC°S <o-VM c°s 70 = -VR (25)

Likewise

e = yT-YM : VTsin(@o+@d)-VMsin(Yo+Yd ) (3a)



which becomes(because _sin _o-VMsin 7o = C)

:   Tcos 7o (3b)

From equations(ib), (2b), (3b), it is pcssibZeto constmot a block
diagram of the homing kinematics as sho_ in fibre 2. Note that the

quantity _-x M is replaced by

5 VRdt -VRt+R o : - ± : VR(T-t )

where R o is _fined as the range at t = 0 when the problem is

consi_red to begin_ _d T-t is the time t¢ _ or time remaining _til

collision.

Control System and Aero_na_cs

The portion of the block diagram of fibre 2 which closes the kine-

matics loop described above consists of the control system and aerodynamics,

the function of which is to develop a 7d il response to the input angle

\a" It should be noted that the exact form cf control is left unspecified
since it is to be determined by the optimization procedure. However, two

conditions are imposed in this study: (i) p_ysical realizability of the

over-all system, and (2) limited output capalility (i.e., limited control

deflection) of the control system. There are many other conditions }fnich

could be imposed but need not be considered ?ere because they are of <_nor

importance. One of these conditions is the llind range of the radar, which

althou_ an inherent characteristic of all active radars, is assumed to be

zero in this study; that is, it is assumed t_at the seeker is able to

detect the target and provide guidance info_ation all the way to the end

of flight. The reasonableness of this assumption is discussed in later

sections.

Idealized missile aerodynamics are assrm_d in this report for mathe-

matical convenience; that is, the transfer flmction relating control motion

to the _r£ssile displacement perpendicular to the velocity vector VM

is taken to be simply ka/S2 , where ka is _he aerodynamic gain and i/s s

represents two kinematic integrations. This assmmption is considered

reasonable because specific aerodynamics are expected to have little effect

on the over-all missile performance. I Furthcmnore, generality is not

compromised since arbitrary aerodynamic factors can be included if desired.

It will be noted that with ideal aerodynamics, lir_ted control surface

deflections are equivalent to limited accele_ ation capabilities, and either

concept can be used to describe the limited capabilities of the missile.

iReference 2 shows that if a control system is optimized for a specific

set of aerodyna_mic factors_ the final effect on miss distance is small

provided that the aerodynamic factors are reasonably fast (i.e., reasonably

high in undamped natural frequencies). Although reference 2 is applicable

to only the beam-rider guidance system, it ¢_n be seen from later portions

of this report that the same conclusion will apply to the homing problem.
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Target Evasive Maneuver and Noise Inputs

Since the design of a system depends on the characteristics of the

inputs to be encountered_ it is necessary at this point to discuss these

characteristics. For the homing study_ target maneuvers and glint noise

are the only inputs considered_ and it is assumed that they are uncorre-

lated. They can therefore be shown as independent inputs in figure 2 and

can be defined independently. The properties of the inputs used in this

report are the same as those employed in the beam-rider study of refer-

ence i and are reviewed in the following paragraphs.

The glint noise_ YN_ can be described best in statistical terms.

Many experimental determinations of glint noise indicate that_ typically_

it has a Gaussian distribution and a spectral density 2 of the form

(4)
@N = TN22+I

As in reference i_ a value of N = 15 feet squared per radian per second

and TN = 0.0265 second is used for the example employed later in the

report. Such values are typical of a large bomber target.

The type of target maneuver upon which to base the system design

can never be determined with certainty_ since the target quite obviously

may maneuver in many different ways. The best evasive maneuver would

result if the target pilot possessed unlimited knowledge about the

attacking missile and could therefore always maneuver in the optimum

manner to avoid being hit. Such a concept is possibly somewhat unreason-

able because of the difficulty in obtaining and properly utilizing all the

information necessary to execute such a maneuver. A more reasonable

assumption is that the target pilot knows only that he is being fired at

and therefore executes some evasive maneuver. The concept which is used

in this report is to picture the target evasive maneuver as a stationary

random process in which the target turns at its maximum possible rate

alternately in opposite directions without regard to what the attacking

missile is doing. The length of time between switches is assumed to be

randomly distributed according to a Poisson distribution (i/[)exp(-Z/[),

where Z represents the length of the interval and [ the average interval

length. It can be shown (ref. 3) that the spectral density of the target

displacement is then

where the quantity aT represents the magnitude of acceleration perpen-

dicular to the line of sight_ and k is twice the average switching rate_

or k = 2/[. For the example situation to be used later in the report_

2The definition of spectral density used here is the same as in refer-

ence 1_ except that the ensemble average 0 2 is used instead of the time

- 2"average 02_ that is, 02(t) = _O(_)d_0.

-.DO



the target is assigned to maneuver with +ig _cceleration with an average

period of _ seconds, _nich gives aT = 32.2 _t/sec 2 and k = 0.4 s_tch/sec.

There are several important comments to be made concerning this type

of input. First of all, a statistical descrLption of the target maneuver

process is a desirable one, since target motLons cannot be described as

unique functions of time. Secondly it is cl_ar that the maneuver is a

severe one and puts the system to a good test_ it is often found that

systems designed according to theories based on either no maneuver or very

weak maneuvers have _acceptably poor perfornance in the presence of a

more severe maneuver. Another consideration not generally realized is

that the stationary process described above Ls also applicable to certain

important nonstationary processes. In any r_al problem it is apparent that

the inputs are distinctly nonstationary. For instance_ they are nonstation-

ary because the target motion and noise do not exist for an infinitely

long time into the past. However_ the nonstationary character of the input
is due to the strict mathematical definition. It is clear that in the

practical case it makes little difference to the missile so far as miss

distance is concerned_ whether a process is _onsidered to persist over an

infinite or a finite period so long as the p_ocess begins at a time before

the end of the attack by an amount equal to _r greater than the system

response time. (Of course_ the process may _erminate any time after the

attack is over without affecting the results.) In other words, an infinite

period is, for practical purposes, simply one which is longer than the

system response time. Thus when the system _esponse times are short_

results obtained by means of the stationary Lnput apply directly to an

important class of nonstationary problems. _e results presented herein

are in this category.

Optimization Criteri)n

Mean-square miss distance is chosen her_ as the criterion for the

evaluation and optimization of system performance. Although a probability

of kill criterion would be more desirable to use, this concept is unwieldy

in application_ and is closely related to me _n-square miss distance anyway.

It should be noted that miss distance a_ used here is defined in terms

of the radar center of the target and the celter of gravity of the missile;

that is, miss distsnce is the closest approach of the missile center of

gravity to the center of the target. Since _here is only one miss distance

associated with any one attack, mean-square _ss distance implies a large

(theoretically infinite) number of attacks a _ainst targets _th identical

statistical maneuver and noise properties.
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General Considerations

In the optimization problem to be considered in this report there are
certain concepts which are so intimately associated with the solution that
it _ill be necessary to discuss these concepts in the follov_ng paragraphs.

Me_-square output.- For systems characterized by linear constant-

coefficient differential equations the relationship between the output

and given analytical or statistical inputs is well known and particularly

simple. For time-varying systems, however, the relationship is si_milar

but not so simple. The general linear time-varying system may be conven-

iently described (see sketch) in terms of its time-varying impulse response

Oi(t ) _- lh(t,tl)l =- 80(t )

h(t,tl) , which is the response at time t due to an impulse put in at

time tl; that is, if ei(t ) is an impulse Uo(t-tm) then the output

8o(t ) is defined as the impulse response h(t,tl). This response function

can be used to find the output due to any arbitrary input. However, when

the input is a random process, the output can be described only by its

statistical properties. One of the most useful properties is the mean-

square ensemble average. For the particular case when the input 8 i has

a constant sj_ectral density of unity magnitude_ the mean-square ensemble

output eoS(t) is given by the equation s

_t

8oS(t) = 2_/ hS(t,tl)dtl (6)

SThe form of this equation is a consequence of the definition given

in footnote 2. That is the relation 8is(t ) = cPii(O ) = _ _ii(<o)dw (for

a stationary process) implies the transform pair <[_ii(m) < @ii( ' iwm_' ---- _, ) e Li_

i -i_0T

- <i>ii( )ed<. for spectraldensityinput,

q_ii(m) = 2_Uo(m ). It then follows from the relation between input and
output correlation functions

t'
_oo(t,t, ) = __t & h(t,tl)h(t,,tl,)c_ii(tl,_tl)dtl,dt 1

Co

that for unit spectral density input,

0oS(t) = _oo(t,t) = 2_ ft hS(t,tl)dt I
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In this report the mean-squarevalues of sew_ral different quantities will
be of interest. By appropriate interpretaticms of the quantities @o(t)
and h(t,tl) each of these can be obtained frc_mequation (6).

The preceding discussion is applicable c_nly whenthe input is white
noise. However, spectrums of physical pheno1_enaare never flat. Since
we are interested in mean-squarevalues, which dependonly on the input
spectrum, it follows that if the input is replaced by another random
f_iction _th an identical spectral density, the mean-squareoutput will
be the same. Such a randomfunction can be i_eadily generated by simply
passing white noise through an appropriate s}laping filter. By this means
an equivalent system can be derived which ha_ the samemean-squareoutput
as the actual system and furthermore has a _lite noise input. The output
can nowbe obtained from equation (6) if h(_,tl) is defined as the impulse
response of the equivalent system, which is a series combination of the
appropriate spectrum-shaping filter and the actual system.

Adjoint theory.- To evaluate equation (6) it is necessary to obtain

the impulse response h(t,tl). This is usually done by solving the differ-

ential equation describing the system being _tudied. For linear time-

invariant systems this can be done relativelf simply by solving the system

differential equation by classical methods; ilowever, for time-varying

systems analytical solutions are not generally possible. Nevertheless,

solutions can be obtained by the use of an alalog computer. The system

is simulated on the computer, an impulse uo(t-tl) is introduced at time

tl, and the computer generates the system response h(t,tl) for that

particular value of tI. To obtain the system response for all t I it

is apparent that a great many runs are requi_ed. In this way there results

a falmily of curves h(t,tl) plotted against t for various values of t_.

However, to evaluate equation (6), curves of h(t,tl) plotted against t l

for various values of t are required. Suc_ curves must be obtained by

cross-plotting the computer runs, which is O_viously a somewhat unwieldy

procedure.

The difficulties apparent in this methol can be largely overcome by

utilizing adjoint theory. This is because t_e adjoint system can be used

to generate h(t,tl) as a function of t I f_r a particular value of t.

Thus the entire operation indicated in equation (6), that is, generation

of h(t,tl) , squaring, and integrating, can oe performed in a single

computer run.

A description of the adjoint theory is given in reference 4 and need

not be repeated here. However, to fully understand the homing problem it

will be necessary to review certain essentials of the theory. To begin

with, it must be pointed out that the theor_ is applicable only to linear

systems, either time-varying or non-time-varying. Within this restriction

any system may be replaced by its corresponding adjoint system. There are

two ways in which the adjoint system may be constructed. In one method

the original differential equation is translormed by the application of

simple rules into the corresponding adjoint differential equation from
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which the adjoint system block diagram can be constructed. The other
method, which is used in this report_ is to construct the adjoint system
block diagram directly from the original block diagram. Whichever method
is used_ the effect of the transformation is, in a sense_ a reversal of the
time scale of the problem. In the real time problem we are concerned with
a particular time interval from t = 0 whenthe problem begins to t = T
when the problem maybe considered to end because it has no useful meaning
beyond this time. For example, in the homing problem t = 0 might be
defined as the time of launching and t = T as the time when the missile
reaches the target. In the adjoint_ the time interval is identical but
the time scale is viewed in the reverse sense. This is readily seen from
the definition of adjoint time_ which is T = T-t. Thus_ the beginning
and end of the interval in adjoint time_ _ = 0 and 7 = T_ correspond respec-
tively to the end and beginning of the interval in real time_ t = T and
t = 0.

The rules for deriving the adjoint circuit can be summarized as

follows:

i. The input and output of each box are interchanged and the

direction of signal flow reversed.

2. The input and output of the over-all system are interchanged.

That is, whereas the impulse is introduced into the original block

diagram at point A and the output obtained at point B, in the adjoint

circuit the impulse is applied at point B and the output is obtained at

point A.

3. A time-varying element in the real time problem, which is

represented by F(t) during the interval of interest, is replaced in

the adjoint problem by f(T). This function is made to be simply

F(T-T). In other words f(T) is the same as F(t) but runs backward

starting at F(T) and ending at F(0).

In terms of the adjoint circuit and adjoint time, equation (6) for

the mean-square output can now be rewritten as follows

jt 2 fooOo2(t2) = h2(ta,tl)dt__ = h2(t2,T-T)dT

(7)

where the h 2 has been redefined to include the 2_ factor. Thus h

now represents the impulse response of the series combination of the

spectrum-shaping filter, the actual system, and a _ factor. Equa-

tion (7) may now be rewritten in terms of the time TI at which the

impulse is introduced into the adjoint circuit. In view of the reciprocity

which exists between the real-time and adjoint-time systems it is seen



12

that TI is simply T-te. Thus by eliminating t e we have

0o
Oo (t ) =

0

c_

=I (8)
0

where h(m,ml) is the response of the adjoint system to an impulse intro-

duced at Tl plotted as a function of m (hut is not of the same functional

form as h(T-ml,T-m)). It should be noted that in this latter form the

t2 on the left side of (8) is contained im_licitly in the mI on the

ri_t side. Also, the lower limit has been replaced by zero in equation (8),

since the impulse response is zero for m < _-t2o This limit corresponds

to the obvious fact that in the original system there can be no response

at t2 due to an input which occurs after te.

The infinite upper limit on the integral in equation (8) needs some

further explanation. Since we are interested only in the time interval

m = T-t a to T, corresponding to the real time interval t = 0 to t2,

it is apparent that the integration has no meaning beyond m = T. However,

if the impulse response has died out by the time m reaches the value T,

then the _ upper li_mit is valid. In terms of the physical problem this

is equivalent to the fact, mentioned in the problem formulation, that

inputs occurring before the time of interest_ t2_ by an amount equal to
or greater than the missile response time caa have no effect on the mean-

square output at te. For this reason it is implied in equation ($) that

the initial time to go T must be at least _s great as the impulse response

time of the system. This is a reasonable assumption in most cases. For

instance, it v,dll be seen in the typical exanple introduced later that

the impulse response does not extend beyond _ few seconds.

Solution With No Control Motio_ Restriction

In this section will be considered the Bolution for the optimum homing

control system which satisfies only the mininum miss-distance criterion.

No attempt is made to account for saturation effects due to limits on the

control motion. For this reason the solutio_ is not expected to be of

practical interest. However_ the solution o_ this simpler problem can be

used to lead to the solution of the more complex problem in which the

finite missile maneuverability is considered.

Adjoint block diagram.- The first step in the solution is to derive

the adjoint block diagram. For this purpose it will be desirable to redraw

figure 2 in a more suitable form as given by figure 3. It should be noted

that in view of the discussion of the previous section the inputs YN and YT
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have been replaced by filtered white noise. The spectrum-shaping filters

shown are readily derived from the respective spectral densities of

YN and YT as given in equations (4) and (5). So that the block diagram

will be consistent with equation (8) the input to the block diagram is

shown as white noise of unit spectral density which is then multiplied

by _. The quantities (yN), (yT), and (e) appearing in figure 3 are

shown in parentheses because they are not the same as the true quantities

except in terms of their mean-square values. All of the system except for

the range-varying kinematic gain is lumped together and identified by its

impulse response w(_,_), or equivalently its transform W(s,t), which is

considered a function of t in order to include time-varying control

systems. The transfer function W(s,t) thus contains the kinematic gains

I/V R and VM cos 7o, the idealized aerodynamics, and the control system.

It is now possible to construct the adjoint block diagram corresponding

to figure 3 by means of the rules given previously; the result is given

in figure 4. Several points should be noted concerning this figure. First,

the asterisk superscript denotes that W*(s,t) is the adjoint of W(s,t).

Second_ the impulse input required to obtain the system impulse response

is shown introduced at the point corresponding to the error_ e = yT-YM_
in the original system. Third, corresponding to the two inputs which

appear in the original system_ there are two outputs which appear in the

adjoin% one related to the error due to noise and the other to the error

due to target maneuver°

Adjoint equations.- It is now desired to write the expression for the

mean-square error e--_ in terms of the unknown control system w(_,_).

From figure 4 it can be seen that the error is composed of two parts, one

due to noise and the other due to target maneuver. By utilizing equa-

tion (8) the mean-square value of the components £N2 and eT2 can be

written in terms of the corresponding impulse responses ENf and ETf

shown in figure 4. Since the noise and target maneuvers are uncorrelated,

the total mean-square error is given by

e2(t2) = [ENf2(T,TI) + ETf2(T,TI)] dT (9)

0

In order to find the optimum control system, it is now necessary to express

equation (9) in terms of the unknown control system w(_,_). It is shown

in appendix A that the mean-square error e2 can be related to the control

system w(T,_) by the following two expressions:

em(t2) : _ h(T-x'TI)hN(T'T-x) +

{o;[Uo (lO)
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T

(ii)

In equation (i0) it is seen that the mean-s_uare error consists of two

parts_ the first due to noise and the seconl due to target maneuver. The

known factors in this equation are h N and _T, the impulse responses of

the spectrum-shaping filters multiplied by _, and Uo, the unit impulse.

The only unknown is h(T,_1) which can be interpreted as the impulse

response of the adjoint homing system. The second equation, (ii), is an

integral equation in which the response h(T,TI) is related to the control

system w(_,_). Thus it is clear that by the pair of equations (i0) and

(ii) the mean-square error is expressed in terms of the unknown control

system w(_,_) by means of the intermediate response h(T,Tl).

Solution.- It is now necessary to determine the optimum control

system w(T,_) which will minimize the mean-square error. No convenient
means is known for treating such general time-varying expressions as

equations (i0) and (ii). However, rather than determining the minimum

error for all times, we may greatly simplify the equations by confining

our attention to the error at zero range, cr t = T, that is, the miss

distance. (In fig. 4 this corresponds to _aking the input Uo(_), so

that the output becomes ee(T).) In this case the equations can De solved

as shown in appendix A. Since we have confined our interest to one instant

of time, the time-varying nature of h(T,TI) is arbitrary. Consequently,

there are a great many time-varying control systems W(T,TI) which are

optimum. As discussed in appendix A it will only be of interest here

to examine the simplest of such systems, the constant-coefficient control

system. The solution for this case is

)
ds

w°(s)= l-Ho( ) (12)

where

fHo(_0) = i e-i_t _ ¢T (_)ei_t d_ dt (13)

Note that ¢ = $T + CN = @+$- where the + superscript refers to the upper
half-plane poles and zeroes while the - reJers to the lower half-plane

poles and zeroes.

For the example case to be considered in this report 3 for which the

numerical values describing the input spec_ra are given in the problem

formulation section, the optimum control s_'stem Wo(S ) is found to be

a rational function of the general form
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%(s) = a
A(s)

sB(s)
a3s3+aese+als+l

--= 2
s(b4s4+b3s3+bsse+bls+l )

Numerical evaluation gives

Wo(S ) = 2 (3"58s+l)(0"373sS+0"886s+l) (15)

s(2.50s+l)(0.490s2+0.727s+l)(0.687s+l)

An important conclusion can now be drawn regarding the relative

performance of homing and beam-rider systems. This conclusion is that

the two systems have precisely the same optimum ,miss distance performance

for any given attack situation. _e reason for this will be indicated

in the follo}_ng discussion.

It _ii be recalled that the optimization of the beam-rider system

as treated in reference 5 was based on minimizing the time average of

the squared error. However, following the theory in the present report

it vsuld be equally possible to minimize the mean-square ensemble error

of imiss distance. The result would be to yield an expression for Ho(e )

vSich is identical in form to that given in equation (13) for the homing

system. (It should not be inferred that the control systems are there-

fore of the same form, however_ because of the basic difference between

the kinematics of homing and beam-rider guidance.) It is clear that the

numerical values of these two Ho'S will be identical in any given attack

situation only if the expressions for CT and @N are the same for both
systems. Under these circ_nstances the mean-square ensemble miss distances

_&ll be identical. That the ¢'s are the same is readily seen for the

tail-chase situation, but it is not immediately apparent for other attack

aspects. Although it was not intended in the beam-rider study to deal _th

the general case, it can be sho_ that under certain circumstances the

beam-rider problem is amenable to generalization of the same type employed

in the homing problem. One such circumstance is when the tracking radar

is sufficiently far from the target that rotations of the line of sight are

small. Another is when the tracking radar is sufficiently far from the

target that rotations of the line of sight are small. In either case, the

target motions and noise may be regarded as perturbations about a reference

line which moves at constant velocity _thout rotation. _]is is precisely

the same situation assumed for the holming system geometry so that inputs

and therefore miss distances of the two systems are identical. In other

words, in any given attack situation the homing and beam-rider systems

are actually solving the same problem, and it should not be surprising

to find that they have the same optimum performance. A somewhat different

situation develops when missile acceleration limiting is considered, but
this question will be deferred to the next section.
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The performance of the homing system c_n now be sho_m. Note that for

the beam-rider system the error c is both stationary and ergodic. Thus,

as a consequence of the ensemble average equivalence just shown between

the unrestricted homing and beam-rider problems, it is possible without

further calculation to utilize certain of the beam-rider results directly

in the homing problem. To illustrate, for the example attack situation

a curve of _minimum obtainable miss distance versus noise magnitude for the

beam rider (taken from ref. 5) is plotted as the lowest solid curve in

figure 5; the corresponding curve for the boning system, identical to that

for the beam rider, is sho_m as the lower dotted curve. This curve repre-

sents the theoretical lower limit of miss distance, and is useful in making

comparisons with the performance of other homing systems.

It is interesting to compare these results with the performance which

would be obtained by disregarding noise theory in the design. As an

example, the uppermost curve in figure 5 shows the noise performance of

a system optirmized for a target motion with no noise present. A comparison

of this curve with the optimum curve shows that a significant reduction in

miss distance should be possible.

Solution With Control Motion Restriction

Synthesis of the optimum control system, taking into account missile

acceleration saturation, is considered in tais section. The importance of

this phase of the homing problem has been @iscussed previously, and can be

graphically illustrated in this section.

Adjoint block diagram.- As a first step in the optimization procedure

for the restricted control motion case, it will be necessary to reconstruct

the adjoint block diagram of figure 4 in a form suitable for evaluation of

mean-square control motion. To obtain mean-square control motion, an

impulse input must be introduced at the poiat in the adjoint system which

corresponds to _e control motion in the real time system. Thus, the

idealized aerod_lamics, ka/s2 , are separated from the remainder of the

system. This remainder is designated C*(s,t), again shoving C* as a

function of time to include the possibility of a time-varying control

system. The desired adjoint block diagram is shown in figure 6. It can

be seen that mean-square Imiss distance can _iso be evaluated with this

same block diagram by merely changing the location of the input impulse.

These alternatives are both sho_n in figmre 6. As in the unrestricted

problem, c2(T)_ or mean-square miss, is obtained at the output by intro-

ducing an impulse at point A at T = 0. As for the control motion,

however, we are interested in not only the end point_ t = T_ but all other

times t2 prior to t = T as well. This quantity, _2(t2) , can be

obtained at the output by introducing the impulse Uo[T-(T-t2)] at point

B (i.e., at 7 = TI _ T-ta).
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Impracticability of unrestricted solution.- It is now easy to show

the difficulty with the unrestricted solution previously obtained. The

constant-coefficient control system Wo* given in equation (14) is split

into aerodynami_ and control system parts and inserted into the block

diagram of figure 6. Because of the form of C*(s_t), an impulse intro-

duced at point B would result in an infinite output of the homing
system adjoint. This means that infinite missile accelerations would be

called for 4 when this system operates in the presence of glint noise, and
serious limiting would occur. This result is also obtained from time-

varying W0 .

It can be shown that the infinite acceleration _ich would be

required can be readily reduced. Since the called-for acceleration

spectrum extends to somewhat higher frequencies than does the input

spectrum_ a certain amount of additional filtering can be added to the

control system to result in finite accelerations without significantly

altering the miss distance performance. However_ in order to reduce the

magnitude of acceleration to practical levels, so much filtering must be

added that it becomes an appreciable part of the desired system filtering.

The miss is thereby increased. The problem thus amomuts to compromising

between increasing the miss distance and decreasing the called-for

acceleration, and is well suited to analytical attack. Such _ analytical

approach was taken in the beam-rider study of reference i. Here the miss

distance was minimized with a restriction on the available control motion.

This restriction was chosen so that the probability of the control surface

physically lin_ting is small and the system therefore operates essentially

as a linear one. This is the approach which will be adopted in the

remainder of this report. It should be noted in particular that other

types of limiting which might exist in the guidance system are not consid-

ered in the theoretical formulation of the problem. This is because it

is believed that acceleration limiting is predominant and that imposing

a suitable restriction on this quantity _,_ii satisfactorily reduce the

other types of limiting. The validity of this assumption will be treated
in a later section.

Adjoint equations.- The problem we wish to solve can now be stated in

terms of finding that control system transfer function, C*(s,t), which _ill

minimize the mean-square miss distance, c2(T), with a restriction on the

mean-square ensemble average of the called-for control motion_ _2(t2).

From physical reasoning, it is clear that to obtain an optimum system_

this mean-square control motion should be as large as possible at all

times throughout flight; that is, it should remain constant at the maximum

permissible value. Formulated in terms of the adjoint block diagram_

this means that we want to find the system which will do both of the

following:

4Strictly speaking infinite acceleration is called for only when the

noise spectrum is white (i.e., TN = 0). However; since TN is generally

quite small; the called-for acceleration is extremely large; essentially

infinite for practical purposes.
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i. When an impulse is introduced at point A at time T = 0_

produce an output which is a minimum.

2. When an impulse is introduced at point B_ produce an output

of a specified magnitude independent of _he time at which the impulse

is introduced.

Mathematically this amounts to minimizing the quantity

c2(T) + pSa(ta) (16)

for all values of t2_ where p is a Lagrsngian multiplier.

The expressions for both the mean-squ_re error and the mean-square

control motion can now be written in terms of the unknown control system

c(T,_). These equations are shown in appendix A to be:

Mean-square error

2

ce(ta) = h(_-x, Tl)hN(_,'-x)dx +

O O

(17)

h(_,_) = o(_,_)d_ d_ - -- h,_,_) c(_,_)d_a_ d_
T

O

Mean-square control motion

_(t_) =f g(_-x,_)hN(_:_-_)ax
O O

(18)

{/_[ Uo (T-x- _l) -g(_-x, T- )]hT (7,7-x) dx}2 } d_
O

(19)

= • • g(_,_) c(_,_)d_ d_ d_
0

(8o)
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As can be seen in equations (17) and (18) the mean-square error is related

to the control system C(T,[) through the intermediate response h(T,m_).

Similarly in (19) and (20), the me_-square control motion is related to

c(m,[) by means of g(m,Ti). Thus, it is clear that the error and control

motion are related to the unkno_m control system C(T,_) by means of the

four equations above.

The optimization problem is now one of solving the above equa-

tions (17) throu_i (20) for the optimum control system c(m,[) so as to

minimize the miss distance _&th the desired control motion restriction.

k_hese equations are so formidable that exact minimization appears imprac-

tical. Even when the problem is simplified to minimizing miss distance

with a control motion restriction at the end of the attack only, no

solution has been found. As a consequence of the difficulties involved,

some approximate method must be found to synthesize the optimum control

system.

Approximate solution approach.- It will now be necessary to review

some of the physical reasoning }&ich plays an important part in the optimi-

zation of the homing system. To begin _Eth, the desirability of the _ssile

following a CTB course has been emphasized previously. Such a course,

however, can never be followed in practice because of the noise and the

system time lags. Consequently, some rms miss is inevitable. When the

missile has unlimited acceleration capabilities_ it should be able to do

the best possible job in approximating the CTB course and the minimum miss

distance should result. _is minimum has been shown in a previous section

to be identical for both the beam-rider and homing systems. However, it

is clear that any real missile with lilmited acceleration capabilities

car_uot achieve this ultimate performance because the noise produces an

infinite called-for acceleration which the missile cannot achieve. Thus

the CTB course cannot be followed as closely as _th unlimited acceleration

capability, and the minimum miss distance is increased. In this situation

the smallest miss distance can be obtained by including in the opti_mization

theory a restriction on the acceleration capability of the missile. By

this procedure, it was established in the case of the beam-rider study that

the miss distance is increased only a small amount and that the missile

still flies quite close to the CTB course. Actually, miss distance is

quite closely related to the relative displacements of the ends of the line

of sight from the CTB reference, that is, the quantity c which is yT-y M.
For the beam-rider system these quantities are directly related so that

minimizing miss distance is entirely equivalent to _minimizing these line-

of-sight deviations from CTB. For the homing system, however, the same

equivalence is not valid. In this case the quantity to be minimized is

the miss distance, but because of the kinematic time-varying range it is

related in a complicated fashion to the deviations from CTB. Nevertheless,

it is clear that small miss distance inherently requires a course not far

from CTB; otherwise maneuvers of the target during the terminal phase could

not be adequately corrected for by the missile and the miss distance would

necessarily be increased. As a result of these ar6_mnents we would naturally

expect that for the acceleration-limited homing system to achieve minimum

miss distance, it would have to fly close to a CTB course. Following such
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a course does not appear to place any undue d_mandson the homing system.
Wewould expect that as long as the missile h_s the sameacceleration
capability as in the beam-rider system_ the h_ming missile should be
capable of following the CTBcourse just as w_ll as the beam-rider missile,
and should therefore be able to obtain the samemiss distance performance.
_us, as a good approximation it can be said shat the performance of the
optimumhoTr_ngsystem with a realistic restriction on missile maneuver-
ability is identical to that of the optimum constant-coefficient system.
_e verification of this approximation must b_ deferred to later sections
(see p. 29). By meansof this approximation, kowever, it is now possible
to investigate the synthesis of the homing system.

The three requirements which the homing _ystemmust satisfy can now be
enumerated: (I) the miss distance performanc_ should be the sameas for
the consta_It-coefficient beam-rider system, (_) the ms control motion
skould remain constant throughout flight, and (3) the control system should
be a reasonable one, that is_ one which can be readily mechanized without
being overly complicated.

Let us consider how each of these three _equirements can be satisfied.
To satisfy the first requirement, that the mi_s distance performance be the
sameas for the constant-coefficient or beam-_ider guidance system, it is
clear from equation (17) that it is only necessary for the imp_ulseresponse
of the adjoint system h(m) to be the sameas y(T) which is the imp_ulse
response for the optimum constant-coefficient beam-rider system. Then it
can be seen that the control system C(T,_) which gives the desired h(m)
can be found by solving the integral equation (18). It has not been found
feasible to solve this equation directly. Th_ difficulty appears to be in
the ma_ler of representing the control system_ by a single impulse response
c(m,_). Since the impulse response of even a physically very simple time-

varying system may be quite complicated, we w_uld expect that the solution

for the optimum control system would be even _aore unwieldy. In addition,

there is no assurance that the solution would satisfy the third require-

ment, that is_ that the system be a simple anl reasonable one. Consequently_

it has been necessary to find another represe_itation.

A more suitable representation which has been found is based on split-

ting up the control system into several parts, each with its own impulse

response. Since control systems employing mu_tiplying elements are the

most colmnon and easily constructed_ it is desl.rable to consider control

systems of this type. A simple form is one _lich consists of two parts_

a time-varying multiplying element and a non-_ime-varying transfer function°

_e question arises as to where the multiplie_ should be placed° The entire

control system can be visualized as a single _omplicated filter constructed

of a number of elements_ among which are the _adar at the input and a

control-positioning servo at the output. Pra_tically speaking, the multi-

plier ca_uot be located at the input of the slrstem because at least some

elements of the radar must precede it. Simil_rly, it is not practicable

to place the multiplier at the system output° Thus_ the only reasonable

configuration for the real time control system is as shown in the following
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sketch where the multiplier is designated as F(t) to indicate the time
variation. The adjoint diagram of the complete homing system would then
appear as in figure 7-

Radar and Servo and
Filtering Multiplier Filtering

VRXa_ I Y2(s) YI(s)

The above representation of the control system automatically satisfies

the third requirement that the system not be too complex. Furthermore,

as will now be shown, this representation of the control system enables

the first requirement to be satisfied, that is, the desired control system

to be synthesized so as to achieve the desired system impulse response.

An equation which replaces equation (18) can now be derived - one that

relates the response h(m) not to c(m,_) as in (18) but rather to the

control system components as it has been split up. For this purpose,

figure 7 for the adjoint homing system is redrawn. From this diagram, an

equation relating the homing system impulse response h(m), and the control
system components can be derived:

o

(21)

Here the symbol L represents the usual Laplace transform operation.
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Multiplying this equation by m and taking the Laplace transform we get

ds L

o

(22)

Under certain conditions this equation can be solved; that is, for certain

time-varying functions f(m), this equation c _ be solved for the remainder

of the control system Yi(s) and Y2(s)o Thus, the desired impulse response

h(m) and therefore the desired miss distance )erformance can be achieved.

Since there are a great many solutions of equltion (22), a whole class of

optimum time-varying homing systems can be generated, all of which have the

desired miss distance performance.

The remaining requirement, satisfying th_ desired control-motion

restriction, can be achieved as follows. Of ill the homing systems which

are solutions of equation (22), it is clear tllat each system will have

different control motion requirements through)ut flight. Thus, from this

whole class of systems, the one or more havin_ the desired restriction can

be chosen. It would be expected that when th_ system _ith const_ut rms

control requirements throughout the flight is chosen, the magnitude of

rms control motion would be identical with that for the constant-coefficient

system.

It is apparent that the success of the a?proach outlined is dependent

on a suitable initial choice for the time-varring element f(m). The types

of time-varying elements which appear most pr)mising are functions-of-range

multipliers such as: (i) range multiplicatiol, (2) a power of range

multiplication, (3) exponential-type multipliers, or (4) combinations of

these types. Other types of elements such as a variable time-constant

filter do not appear as feasible in satisfyin_ the three requirements for

the homing system. It should also be pointed out that the non-time-varying

control system can be regarded as a special c_se of the above systems.

Example situation.- In the following sections certain systems of

interest will be examined in detail in terms )f a particular example

situation° This will be taken, for convenience of comparison, to be the

same as that of the beam-rider example used i:l referemce i except that

idealized aerodynamics will be assmmed here ilstead of the specific form

of aerodynamics employed in reference i.

The example to be used is based on a tai L-chase situation; although

this attack may seem somewhat trivial for the homing problem it will be

shown later to be easily generalized to more Lnteresting situations. The
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noise and target maneuvers are assumed to have spectral densities CN

and _T as defined by equations (4) and (5), the specific numbers used

being considered typical of what would be expected in an attack against

a large bomber. The magnitudes of the bomber and missile velocities are

taken to be VT = 880 ft/sec and VM = 2640 ft/sec, respectively, which

gives a relative closing velocity magnitude of VR = 1760 ft/sec. The

ideal aerodynalmics are represented by a control effectiveness constant,

i/Td, of 0.4792 radian/sec, giving an over-all aerodynamic gain

k a = VM/Td, of 1265 ft/sec s per radian.

For these conditions the optimum over-all transfer function Yo(S)

has been determined using the method of reference i so as to restrict

the rms control motion, _, to an arbitrary but typical value of

0.128 radian, s Because we are assuming idealized aerodynamics, this is

equivalent to restricting the rms acceleration to 5 g's. The solution

for the optimum transfer function is found to be of the form:

22

Yo(S) = o +2 3 s+1 (23)

where the constants are all more or less complicated funtions of the

problem parameters. For the particular values of the parameters given

above, there is obtained

Yo(S) = i°282sS+1"7742+i (24)

(0.6868s+i)(0.490s2+0.714s+i)(0.0694sS+0.3726s+I)

The impulse response of the system represented by this particular

Yo is plotted in figure 8 for reference purposes. It is of interest

to note that this response approaches zero rather rapidly after a time

interval of a few seconds. Thus, only these last few seconds of the

attack need be considered in the analysis.

The miss distance performance for this constant-coefficient case

has been found to be 21.4 feet, which represents the optimum performance

for the given situation. Since the noise magnitude is one of the most

important quantities and most subject to wide variations, the minimum

miss distance performance for varying amounts of noise is given for the

beam rider in figure 5 by the middle solid curve. The operating point

for the example case is shown. From the discussion of the previous

sections, the rminimum miss distance performance of all optimum time-

varying homing systems is indicated by the dotted curve.

_The 0.128 radian restriction implies that the actual limits on

control motion are enough greater than this value that limiting will occur

infrequently enough for the system operation to be essentially linear.



Proportional Navigat _on

Consta_It-coefficient or time-invariant _ontrol systems are of partic-
ular interest in homing navigation because o_ their simplicity and wide-
spread use. Proportional navigation control systems are principal examples.
However, proportional navigation systems are not only time invariant but
also have a particular form, namely ti_at the steady-state relationship
between _a and _d is a constant. (l_is is equivalen% to a factorable
s in the numerator of the control system trlnsfer function C(s).) In
the analysis which follows only the conditiol of time invaria_ice will be
imposed on the control system_ _ith no restriction on the particular form.
l_e synthesis procedure -will then prescribe the optimum form of control,
and it will be seen that this form is precisely that of proportional
navigation. The merits of this type control will then be examined.

From the discussion of the previous section it is clear that the
optimumhoming system should have about the _ameperformance as the
optimumbeam-rider system. However, with a _onstant-coefficient control
system it is not expected that both the optimummiss distance and control
motion characteristics can be achieved simultaneously. For this reason
we defer considerations of control motion requirements for the moment
and simply assumethat the system is linear. Then in order to achieve
the n_nimummiss distance, we desire to find the optimum constant-
coefficient control system C(s) as shownin figure 6. This should be
done so as to makethe homing system impulse response h(_), in equa-
tions (17) and (18), identical _,_th the optinum beamrider, or constant-
coefficient, impulse response yo(_), which is the inverse transform of
(23). It is clear that in figure 7 a time-i_variant control system is
represented by f(m) = i. Nowthe optimum c)ntrol system can be found
by solving equation (22). If f(_) = i and _(_) = yo(T) are substituted
in equation (22),

dYo(S)
ds

o

(25)

Carrying out these operatioils reduces this e%uation to

dYo(s) kaYi(s)Ye(s)
- [[-Yo(S)] (26)

ds s2

where, again, Yo(S) is the optimum beam-rider transfer function. Now

from a comparison of figures 6 and 7, it is clear that the time-invariant
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control system Co(s ) = Yt(s)Ys(s). Making this substitution in (26)
we cam_ then solve for the control system:

ss d
---- [Yo(S)]

Co(s) = - ka ds (27)
Z-Yo(S)

It is interesting to examine the general for_ for Co(S ). By substituting

equation (23) i_l (27) it is found that

Co(S) = .ss 2A(s) _ 2 sA(s) (28)
k_ sS(s) k_ B(s)

where A(s) and B(s) are polynomials ending _th unity as the last term.

For the particular example situation used in this report, evaluation of

equation (28) gives

Co(S) : 0.00158 s(3"92s+l)(O'243s2+O'808s+l)(O'lSlsZ+O'678s+l)
(2.Ss+l)(O.49sS+O.727s+l)(O.687s+l)(O.O694sS+O.37:_s+l)(O.O322sS+O.254s+l)

(29)

The miss distance performance with this control system is_ of course, the

same as the beam-rider system, or 21.4 feet.

The interesting thing to be noted about Co(s ) is that its for_r_is

that of a proportional navigation control system; that is_ the transfer

function from ha input to _d output contains (I) a factorable s which

can be regarded as representing the differentiation of "\a performed

by the rr_ssile radar, (2) a number of lead and lag terms, and (3) a constm_t

gain. Tl_e form of proportional navigation is obtained here _¢ithout

imposing any requirement other than that the control system be time

invariant. It _,_ii be noted that the considerations involved here are

quite different from those which are usually considered in booming studies.

However, it should not be concluded on this basis that proportional

navigation is optimmn since acceleration requirements have not yet been

considered.

It should be further noted that the method given here _ii always

result in a guidance system obeying the proportional navigation law.

This is because the constant-coefficient transfer function, Yo, has

coefficients which are not all independent. It can be sho_ that in

equation (_3)

2{c_T_ = T_ + 2{7T 7 + 2{uT u
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Physically, this means that the open-loop transfer function associated

with Yo always contains a i/s 2 factor which enables the missile to

follow an accelerating target with a constant steady-state lag. As a

consequence, in (27) the factor [dYo(S)/ds]/]l-Yo(s)] will have a factor-

able s in its denominator, and therefore th_ homing control system

derived from such Yo's will automatically _e of the proportional

navigation type. Furthemore, this type of _ontrol was also obtained in

the unrestricted homing missile problem, which was treated completely

independently of the beam-rider problem. Th_s, it is clear that the

requirement of proportional navigation is dependent ultimately on the

nature of the target maneuver; that is, the _act that the target executes

a switching acceleration maneuver.

Now we will consider the magnitude of t_e acceleration or, equiva-

lently, the control motions, demanded of the missile during its flight

for the proportional navigation control system just derived. This

consideration is important since the 21.4-foot miss distance will be

achieved only if the assumption of no limiting is not violated. The

control motion requirements can be obtained most conveniently from the

computer. With the Co(s ) of equation (29) inserted in figure 6, measure-

ments were made using the procedures outlinel previously. Results of

such measurements are given in figure 9 wher_ the rms _ is plotted as

a function of range, or time to go. This curve might be called the

characteristic of the system. Amy point on the curve may be interpreted

as the root-mean-square ensemble average of control motion at that

particular r_uge. The desired amount of control motion, which is identical

to the beam-rider value, is also sho_ in fi_ure 9 for comparison.

Examination of figure 9 reveals the following information: (i) The

mean-square control motion is finite at all canges, in contrast to what

would be found in the unrestricted case, where the _ characteristic is

infinite at all ranges. (2) The desired restriction on control motion

(i.e., _-_= 0.128 radian) has not been achieved, since less than the

design control motion is used at intermediat_ and long ranges while

considerably more than the desired amount of control motion is called for

at short ranges. In the actual operation of such a system it can be seen

that the control motion would limit at the s_ort ranges. Consequently_

the _minim_a miss distance indicated at the operating point in figure 5

would not be achieved.

A compensating effect in the utilizatio_ of control motions is evident

here. _is arises from the fact that there Ls associated v_th the pre-

scribed miss distance performance a certain _verage effort which the

system must expend. The beam rider operates in the most efficient manner_

using maximum available control motion unifo_lly during its flight. But

the proportional navigation system utilizes Less than the required effort

for part of the time and in order to compensate must try to make up the

deficiency by calling for more th_l the average effort near the end of

flight. In order to make more efficient use of the control motion capa-

bilities in the homing system, it is apparent that a time-varying control

system is desired.
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Range Multiplication Control

In the previous section it has been illustrated that a time-varying

control system is required in order to satisfy the desired control

restriction throug_out flight. There are several forms of time-varying

control which appear capable of satisfying this restriction as has been

mentioned. However, since range multiplication is of v_de interest and

since we _ii see that it provides the approximate desired control

restriction, the other forms of control previously suggested will not

be examined here. It is important to note that the use of range multi-

plication type control does not automatically make the system optimum.

The multiplier is only a small part of the whole system and the remainder

of the system must be chosen to achieve the design objectives.

The complete range multiplication system is represented in figure 7

if we let f(7) = T. In this case the two filters Yl(s) and Ys(s) must

be found so as to achieve minimum miss distance. To do this acceleration

requirements are deferred for the moment, assuming the system to be linear,

and the filters are chosen so as to give an impulse response h(T) identical

with the optimum impulse response of the constant-coefficient system

yo(T). The solution can be obtained from equation (22). We have

_aYo( )ds: Y (s)L k

T; (30)
o

Carrying out these operations, we get

kJo(S)Y (s).]
dY°(s) : Ys(s) d kaYl(s) +

ds _s s2 sS

or

d%(s)
ds

(31)

Now there are a great many control systems, that is, combinations of

Yl(s) and Ys(s) which will satisfy equation (31). A unique solution is

possible by choosing either Y1(s) or Y2(s) and determining the other.

However, if the latter choice is made, it is clear that expression (31)

will be a differential equation in Yl(s), the solution of which involves

unusual functions for a control system - functions which at best would

have to be approximated in some manner. On the other hand if Y1(s) is

chosen, the solution for Ys(s) is readily obtained. From relation (31),
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[Yo(s)]
ds

(32)

Y (s) =
[ s2ds

l_e choice for the servo Yl(s) is nol completely arbitrary. For

example, if the servo is chosen to be quite fast (ideally unity) and no

filtering is provided in the amplifying system driving the servo, the

required Y2(s), radar and associated filtering, is unstable. The

considerations involved in choosing Yl(s) so as to result in a feasible

system are outlined in appendix B. For the example attack situation, the

simplest practical form for Yl(s) is found to be

Yz(s) = bs+----!: 1.O_ s+l
as+l 2.5_ +i

(33)

Application of equation (32) using equatio_ s (24) and (33) then gives the

required radar and associated filtering, Y&, as

Ys(s) = 0.0033_
s(2.bOs+l)(0.243s2+0.808s+l)(O.181s2+O.678s+l)

(2.P3s+l)(0.4463+l.20s+l)(O.llDss+O.476s+l)(0.O195s2+O.196s+l)

'l_e form of this transfer function is particularly interesting. It

is seen here that the radar and filtering, Ys, contains a factorable s

in the numerator which cs=l be considered tc correspond to the differen-

tiation performed by the radar. In this r_ spect the situation is similar

to that of the proportional navigation syslem discussed earlier. The

method used here will always produce a Y2 with a factorable s. It can

be shogun, again, from the equations presenled in appendix B that this

result is due ultimately to the fact that lhe target executes a switching

acceleration maneuver.

Let us now examine the performance of this system. First of all it

is clear that the miss distance is identic_l with that for the optimum

constant-coefficient system (beam-rider). This value, as indicated by

the operating point in figure 5, is 21.4 f(et. As for the control motion

requirements figure 9 illustrates the 5 characteristic for the range

multiplication system. The difference bet_een this curve and that of

the proportional navigation system is stri}ing. It can be seen that the

demands on the missile are now essentially uniform throughout flight, and

at the desired design level which is also Jndicated in figure 9. The

control curve has not only been flattened ],ut its curvature has actually
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been reversed, so that there is a little too much restriction at short

ranges and not quite enough at the intermediate and long raslges. The

compensating effect of control motion at different times during the flight

is again evident here just as in the proportional navigation case. The

ideal system would be one in which the control motion requirements are

constant at the design value throughout the flight. _%us it is clear

that the range multiplier system is not quite a_z optimum form of control

and that possibly one of the other multiplying functions would be better.

However_ the range multiplier control is so close to optimum that little

improvement could be expected. This is because duriz_g the portion of

flight where the 8 characteristic exceeds the design value_ it does so

only slightly. The amotuut of limiting would be so small that the assump-

tion of linearity would still be valid and the expected miss distance
would be achieved.

It is possible, if so desired, to modify the range multiplier slightly

to obtain a perfectly flat $ characteristic as given by the dotted curve

in figure 9. Such a modification is shov_ in figure i0, and it is seen

that this altered multiplier differs only slightly from the original.

The miss distance performance for the modified system is unaltered as a

consequence of the compensating control motion effect described earlier.

It should be pointed out that in practice it is not necessary to

adhere to the range multiplication scheme at long ranges. The reason is

that the operation of the system at times long before the collision point

has little effect on miss distance even when the controls are used

inefficiently. This is because, as discussed earlier and indicated in

figure 8, the impulse response dies out rather rapidly so that inputs

which occur before the collision point by an amount greater than the

duration of the impulse response have no effect on the miss. Thus the

characteristic need only be flat for the last few seconds of flight

and may fall off at longer ranges.

The results obtained for this system indicate very clearly the

follo_ng points: (i) the requirement for an optimum system, that

the rms control motion be of a specified constant magnitude at all

ranges, is satisfied; (2) the requirement for an optimum system, that

the line-of-sight rotation throughout flight be small, is satisfied;

although small line-of-sight rotations have been merely _z assumption

throughout the analysis, verification of this assumption will be given

in the next section_ and (3) the miss distance is not much greater than

the absolute minimum obtainable _th unlimited maneuverability. Thus

it is apparent that the system synthesized represents a good approximatiom

to the homing guidance optimum, and the principal objectives of
optimization have been achieved.

It is now possible to show that the analogy between the beam-rider

and homing problems, already established for the unrestricted case extends

equally well to the restricted case. We have already concluded (p. 19)
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that we would expect the sameover-all performance from these two systems
whencontrol motion limitations are present. Nowin this section we can
see the proof of this, the two systems haviILg not only the samemiss
distance but also the samemaneuverability requirements throughout the
flight. This is illustrated in figure 9, _ere the control requirements
for the beam-rider system are shownfor comparison with those of the
homing system. As a result of this equival_nce between systems, we may
utilize certain miss distance studies made]_reviously for the beam-rider
system. For example, the results of refere1_ce2 maybe used to relate
minimummiss distance to all of the factors which place an inherent
limitation on its minimumvalue. Such factors are the target acceleration
and average switching rate of acceleration, radar noise magnitude, and
missile acceleration capabilities. This relationship is as follows:

NaT I. 14 7.94c_-_= 9.20 + 5.02 -- +
aM (32.2) 2 aT2 +-_--- (35)

A discussion of these effects is given in r_ference 2.

ADDITIONALCONSIDERAf_IONS

It is desirable at this point to discu:_s certain aspects of the
problem not previously considered. This di_cussion is divided into several
sections, in the first of which the initial assumptions madein the
analysis will be considered. In the second section, the effect of blind
range which was neglected in the original s;atement of the problem is
evaluated. The last section contains a dis_:ussion on the effect of attack
situations other than the tail chase used i_L the example case.

Initial Assumptio_Ls

It will be recalled that the assumptiol_ which has been used in order
to linearize the homing system geometry is _at the deviations of the
missile flight path from a straight-line C_ course are small. Thus the
perturbation angles, ha (deviation in the a:)parent line-of-sight angle)
and 7d (deviation in the missile heading f:_om the straight-line CTB

course) are assumed small. The validity of this assumption has been

verified by actual measurement on the analoi_ computer. It must be noted,

however, that _a varies with range, being very small at the larger

ranges and increasing to a theoretically in:_inite value at zero range.

Nevertheless, the ms h a is found to be s_fficiently small over almost

all of the flight, the small angle assumptic)n thus being violated only at

such short ranges that the effect on miss _.stance is negligible.
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Another assumption which has been madeis that control deflection is
the most critical saturating quantity, in the sense that a restriction
applied to this quantity _uld automatically prevent limiting of other
quantities of interest. Thus the system is ass_ned to be linear, and
computer measurementshave verified the reasonableness of this assumption.
Of particular interest is the called-for rate of control motion because
it is related to the servo poT_er. The rms control motion rate was found
to be about 2 radians/sec; since the rate limit of present n_ssile servos
is several times this value, rate limiting is certainly inconsequential.
Similarly, the called-for voltage levels in various parts of the control
system were measuredand found to be easily attainable.

Blind Range

Since wehave assumedin this report that the blind range of the radar
is zero, the results are, strictly speaking, valid only for semiactive
radars. (Most radars are of this type.) For active radars, however, this
assumption is only an approximation. To evaluate the effects of neglecting
blind range, measurementsof miss distance for the range multiplication
system were madeby meansof the analog computer. The blind range was
simulated by the opening of a s_tch at the appropriate location in the
radar. The results are presented in figure ii. For a representative
blind range figure of 300 feet it can be seen that blind range effects are
nearly negligible. Even for larger values of blind range miss distance
increases only a few feet. Since the miss distance of a system designed
specifically for a large blind range would also increase from the zero
blind range case, it is concluded that the zero blind range optimum system
is essentially optimum even for a fairly large blind range.

Other Attack Situations

Since the optimization of the homing system given in this report has
been illustrated by meansof a particular example situation, it is of
considerable interest to examine the application to other attack situations.

In the first place, the tail chase which has been used here is quite
commonwith present-day missiles. This is because so manyconsiderations
enter into the problem that the possible attack aspects are severely
limited to something approximating the tail chase. From geometrical
considerations it can be seen that the optimum system is particularly
insensitive to changes in attack aspect from the true tail chase. Even
as muchas 30o off the tail is essentially the sameas a tail chase.

In the second place, if the exact solution is desired for someattack
aspect other than the tail chase it can be readily obtained by the methods
already presented; that is, (i) specify the problem parameters - attack
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aspect_ target acceleration and noise spectrum for that aspect, and the
missile-to-target speed ratio; (2) compute the CTBcourse and determine
the componentsof available missile and target acceleration perpendicular
to the line of sight_ (3) determine the equivalent optimum constant-
coefficient (beam-rider) system, Yo(s); and (4) detemine the optimum
range-multiplication control system for the homing missile. It will be
seen that different numerical values of the parameters of the optimum
control system result for almost every diffsrent situation. Forttmately,
however, it is found that the parameters of the optimum control system are
not especially sensitive to changes in the problem parameters. It is for
this reason that designing the system for s_mesort of average of the
situations expected to be encountered would result in near optimum perform°
ance for the whole range of conditions without altering the system.

The third commentregarding attack as_sct is that any given solution
applies exactly to manydifferent situations if the problem parameters are
reinterpreted. In other words, given a solution, one can work backward
and find a whole series of problems for which the given solution is valid.
To illustrate this idea for the previous taLl-chase solution_ let us
consider the attack shownin the following sketch. The attack is nearly

6.12g rms

2g

aT = i ___60 °

VM _ _

VT

from the beam, and the missile-to-target s_ed advantage is 1.5 to i. If
the missile speed, VM, is assumedto be 264Dft/sec as in the report
example, the target speed, VT, would be 176Dft/sec. It can be seen that
to have the same aT for which the solutioa is valid (i.e., +ig), the

target must now be assumed to maneuver with +2g acceleration. Similarly

the missile must have a 6.12g rms capability in order that the component

of acceleration perpendicular to the line of sight will be 5g ms as in

the example solution. On the other hand, if the missile has only a 5g

capability, the same solution holds if all quantities are scaled down

appropriately (i.e., target acceleration, +1.63 g's; magnitude of noise

spectrum, N, i0.0 ft2/radian/sec; and miss distance_ 17.5 ft)°
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CONCLUDING REMARKS

The synthesis method presented in this report is an approximate

method - one that has been shown to yield a homing system with near

optimum performance. As is typical of such methods, there are a number

of ways to realize the near-optimum system. One of these, utilizing

range multiplication between the radar and control actuator servo_ has

been given. Possibly other types of multipliers might prove to have

advantages. It is also possible that with further work an exact solution

could be found. Besides these possibilities, there are other factors

which might influence the specific system design. For example, in situa-

tions where launching errors are important it may be desirable to make

modifications in order to reduce launching error in a minimum time. In

other situations, modifications may be necessary because of requirements

of simplicity on certain parts of the system or the necessity of using

certain fixed and unalterable elements in the system. Other alterations

would be required in order to supply artificial damping to the _issile.

Since there are many ways in which optimum performance can be achieved_

it should be possible to include such requirements without sacrificing

the performance. However, an investigation of such factors is beyond

the scope of this report.

It seems appropriate to point out that the example given in this

report is for a specific attack situation with particular numerical

constants. Thus, there is no indication of what effect changes in the

problem parameters will have on the over-all system performance. For

example one might be interested in the effect of target acceleration and

noise on the minimum obtainable miss distance, or in how far to go in

building greater maneuverability into the missile. It would appear such

effects could only be evaluated by carrying through the procedure for

each attack situation. Fortunately, however_ the results of reference 2

can be used for this purpose because of the equivalence between beam rider

and homing guidance.

One of the significant by-products of this study has been the develop-

ment of the equivalence between the beam-rider and homing guidance problems.

As we have seen, both systems attempt to solve the same basic problem

although in a different fashion. There are other - apparently different -

systems which attempt to solve the same problem such as the automatic

interceptor, or antimissile missiles. These problems might well be cast

in a similar mold. In fact generalization to include wide classes of

weapons systems would be a valuable objective of future work.

The most urgent extension of the present work would appear to be to

the critical high-altitude problem. Under conditions of higher speeds

and altitudes of potential targets_ the acceleration advantage of the
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missile over the target is lost, and the present theory is inadequate.

The reason is that the problem becomes a nonlinear one. Extensions

o£ the theory should be made to nonlinear aspects o£ the problem so as

to include such conditions.

_es Research Center

National Aeronautics and Space A_minil_tration

Mo££ett Field, Calif._ Nov. 13, _958
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APPENDIX A

DETERMINATION OF THE OPTIMUM HOMING CONTROL SYSTEM

No Restrictions

In this section optimization of the unrestricted homing guidance

system _ii be considered. Reference should be made to the text in the

report for a discussion of the problem. As a starting point here, it

will be desirable to redraw figure 4 in the following form:

UO(T-TZ)

L

EN f

ETf

In response to the impulse introduced into the input_ the output consists

of two parts shown above as ENf(T T-) and ETf(T,Tz). These quantities
are the filtered noise and target Sr_or signals. Since they are uncorre-

fated, the error is composed of only these two parts_ one due to noise and

the other due to target m_ueuver. If we identify each of the signals

ENf and ETf with the h in equation (8), the expression for mean-square
error can be seen to be:

oo
_(t_) = [E_f_(_,_z) + ETf_(=,_z)]a_ (Al)

o

The assumptions involved in writing this expression are given in the text

proper. From the above figure it can be seen that each of the output

signals is given by

E_f(_,T_)= h(_,_1)_N(T,_)d_ (A2)
--O0

T_mf(_,Tz) = [Uo(_-_z)-h(_,Tz) ]hm(_, _)d_
--CO

(A3)
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By ch&uging to a new variable x = T-_ we gel

0

(A_)

ETf(T,T_) :; [Uo(T-X-T1)-h(T-X,T1)]hT(T,T-x)dx
0

Now equation (AI) can be written as

2

o;<<o; }c2 (tm) = h( T-X, T:_ )hN(T, T-X)(iX +

(A5)

2

O

(A6)

Equation (A6) is a general form which can alsc be used when control-motion

restriction is considered; the only difference would be a reinterpretation

of the symbols h and £. In the present case_ however_ we are concerned

only with minimizing miss distance which is the value of error at time T.

Also the noise and target motion are assumed ±o be stationary. Thus the
miss distance becomes

o O

co

O

By expanding (A7)_ we obtain

- $777 cm(T) = N(X)hN(Y)h(T-x)h(T-y) + hT(X)hT(Y)[Uo(T-X)Uo(T-y ) -

O O

%(T-x)h(T-y) - Uo(T-y)h(T-X) + h(T-X)_(T-y)]} d_x dy dT (A8)
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The particular h which minimizes the miss distance can now be found by

variational methods. One considers ho(7 ) to be the desired optimum

h(T), and introduces a variation hi(7); that is, h(7) = ho(T ) + _hl(T),

where _ is a real parameter. After substitution of this relationship

in equation (AS), the necessary condition for a minim_n of (AS) is that

lira _c2(T)/_ : 0. By carrying out this calculation, it can be sho'_n
_0

that

/)_o_hN(X)hN(Y)[h1(7-x)ho(T-Y) + h_(T-Y)ho(_-x)] -
o o

hT(x)hT(y)E o(T-xlh1( -y)+ - -

ho(T-x)hl(v-Y)]_ dx dy dv = 0

(Ag)

From the symmetry in the above expression, (A9) can be reduced to

oo oo oo

o o o

oo oo

/] ]hT(X)hT(Y)Uo(T-y)dy dx + hT(X)hT(Y)ho(r-y)dy dx dr : 0

o o o o

(A10)

Since hl(T-x ) is arbitrary and is zero for T < x, the minimizing

condition is

co [hN(X)hN(Y)ho(T-y ) - hT(X)hT(Y)Uo(7-y) hT(X)hT(Y)ho(T-y ) ]dy d_x
+

o o = m(T-X)

(All)

where m(T-x) = 0 for T > x. The optimum, ho, can be found by taking

the Laplace transformation of equation (All) to give
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OO C_0 OO

o o o

sx -sy -s[(r-x)+x-y]ahT(x)hT(y)ho[(T-x)+ x-H e e e y _ d(T-x)= M(s)

(AI2)

where M(s) has no poles in the left half-pla_e. Now by interchanging

the order of integration one can reduce equation (AI2) to the following:

0 0 0

hT(X)e sx hT(Y)e u° [ (T_X)+X_y]e-S[ (*-X)+X-y]

O O O

d[ (T-_)+x-H +

/_ d_f _ -sy y7 _ __[(__×)+x_Ha [hT(xle sx hT(Y)e d ho[ (T-x)+x-y e (T-x)+x-y]

o o o

(A13)

Thus

M(s) : HN(-s)H_(s)%(s)- HT(-s)HT(s)_ H_(-s)Hc(s)Ho(_)
(A14)

Sluice HN(-S)HN(S ) : @N(S) and HT(-S)HT(S ) : IT(S),

_,1(s): _N(S)Ho(S)- _,,_(s)+ _F(S)Ho(_)

This equation is the transform of the Wiener-{opf equation and the

solution (e.g., see ref. 4) is

(ilS)

p foo _ @T(a)ei_t
HO(LO) = i / e-iU_t/ d_ at (A16)

2_¢+()_Zo -_ _-(_)
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where

= @T + @N = @+@-

The functions _+ and _" are, of course, the factors of

and zeros in the upper and lower half-planes, respectively.

with poles

It is now possible to determine the control system

achieve the desired impulse response ho(m ) just found.

figure at the beginning of the appendix A as

W(s,t) so as to

Redra_ng the

" wo I
,Tl)

it can be seen that the output response ho(T_mm) is related to the control

system Wo(T , _)by the integral equation

T

As in preceding paragraphs we may let ml = 0 to obtain

_*ho(T) -- -
0

If we were concerned with the analysis problem (i.e., the determination

of the output h(m) for a given control system w(m,_)), the standard

methods of integral equation theory would be applicable. Here, however,

we are interested in the synthesis problem - the synthesis of Wo(m,_ ) to

achieve a desired output ho(m ). It has not been found feasible to solve

this equation directly except in the special case when the control system

is non-time varying. The reason seems to be related to the mode repre-

senting the control system. Even time-varying systems which are physically

simple are quite complicated to represent in the form of an impulse response.

Synthesizing the control system by solving equation (AI7) seems even more

difficult. Nevertheless, a method which exploits simpler representations

of the control system will be presented in the text. It will be seen

from the discussion there that there are a great many solutions of

equation (AI7). These are of interest primarily when the control restric-

tion problem is considered. For present purposes, let us consider only

the simplest of these control systems - one with constant coefficients.
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Then equation (AI7) can be written as

T: - (llS)
O

This eauation is a special Volterra integral equation of the second kind_

and can be solved by taking the Laplace transform of equation (AIS) to

obtain _s[Ho(s) ]

Wo(S) : (AIq)
Z-Ho(S)

With Control Motion Restriction

In order to m£nimize the meml-square error _th a restriction on

control motion_ it is necessary to express t_ese quantities in terms of

the unkno_ control system. For this purposc_ as explained in the text,

the control system must be represented as shown in figure 6. Note that

we are now concerned _th the control system c(T,_), which does not

include the aerodynamics, rather than w(T,_] as in the preceding

discussion. From a comparison of figmres 4 snd 6 it is clear that these

responses are related as follows

(i20)

where the consta_-its of integration will be a_ sumed zero.

From figure 6 two equations for miss di_ tance can be written. In

fact, d_e first of these equations is identi( al _<ith (A6). 'l_e second,

an integral equation, is obtained from (AI7) by eliminating w(7,_) by

means of (A20). For rues_n-square error:

cs (ts) : h (<-x, T1)hN (T ,"-x) dx +

o o

( O_ [Uo (T-X-TI)-h(T-_T)]hT(T'T-X) dT (A21)
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h(T,Tl)---- _ffC(_,Tl)dT dT h(%,T1) C(T,[)dT aT d[
T ,-

0
(A22)

Two similar equations for the mean-sqw_re control motion may also

be _itten in te_us of the control system C(T,_). The derivation of

the first of these equations would follow along the same lines as for

(A6). However, the error c should be replaced by 8 a_ud the response

h(T,Tz) by its corresponding response g(T,Tl). The response g(T,TI)

represents, of course, the output of the homing system adjoint of

figure 6. Thus, the first equation is given by (A23) below. For the

second equation, we can redraw figure 6 as follows

From this sketch the response g(T,Tz) and the control system C(T,_)

can be seen to be related by the expression given in (A24). For mean-

square control motion:

$2(t2)-- £_( { f _g (7-x, Tm)hN(T, T-X) dx} 2

o o

+

<)
o

(_23)

O

(i2_)
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APPENDIX B

DETERMINATION OF THE OPTIMUM RANGE MUltIPLICATION HOMING

CONTROL SYSTEM WITH CONTROL MOTICN RESTRICTION

It will be the purpose of this appendix to indicate the factors which

govern the design of the control system. As pointed out in the text, the

most feasible design is obtained by expressing Ys(s), the radar and

filtering, in terms of Yl(s), the servo and filtering. The solution has

been shown in equation (32) to be

_Yo(S)
ds

Y2(s)= (BI)

By expanding (BI) we obtain

Y2(s)_-

I ds

s 2

K a

2Y (s)][ ]
Yl(s)

s J tdZo(s)/ds_l

(B2)

Now we can represent Yl(s) as C(s)/D(s). Also -[dYo(s)/ds]/[l-Yo(S)]

can be represented by the form given in equa±ion (28) (i.e., 2A(s)/sB(s)).

Note that A(s), B(s)_ C(s)_ and D(s) are assumed to be polynomials which

end _th unity as the last term. With these substitutions equation (B2)

becomes

l s_D2(s)_(s)Y_(s)= --

ka sB(s) LD(s) dC(s)
2 [ ds

c(s)_(_s)]+ B(s)C(s)D(s)
ds J

- c(s)A(s)n(s)

(B3)

Now if we can take the simplest case of Ym(s) = i, (B3) reduces to

1 r sSA(s) ]Y_(s)= _LB(s)-A(s)
(B4)
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For the specific A(s) and B(s) applicable to the example attack situation

(see eqs. (28) and (29)) it can be shom_ that the denominator polynomial

Y2 has some negative coefficients. Thus an unstable Y2 would be required.

The next simplest case is that for which YI(s) = I/D(s) where

D(s): as+l. Equation(B3)the_reducesto

2{a s2D2(s)i(s) }Y2(s) : _aa s[3B(s)-2A(s)]+ 2[B(s)-A(s)] (B5)

This equation would appear to be satisfactory. In the first place although

the same factor B(s)-A(s) occurs as in the previous case, Ys(s) will be

stable here providing the time constant of the servo, a, is large enough.
Secondly, it will be noted that only one factorable s would occur in the

numerator and would represent the differentiation performed by the radar.

Thus this Ys(s) would appear to be satisfactory. However, it is fokud

that another consideration - the signal/noise ratio at the radar output -

would appear to become a critical factor with this system. For this reason

no further consideration will be given to this system. Furthermore, the

design objectives can be accomplished in another way.

The next case to be considered is one in which Yl(s) = bs+i/as+l.

It is easy to show that the general form of Ys(s) }&ll be

y2(s ) = kl s(_Ts7 +e_s 6 + ... + l)

(_gs9 + _sss + ... + l)
(B6)

where kI is a constant. The high order of this system can be reduced

by properly choosing the numerical values of Yl(s). From (B3) it is seen

that if D(s) is chosen to be a factor of B(s), that is, B(s) = D(s) Bl(s),

the order of Ys(s) in equation (B6) would be reduced by one in both

numerator and denominator. Further, C(s) can be chosen so that a factor
of

In(s) dC(s) C(s)
2 L ds dD(S)]ds+ C(s)D(s)

is the same as a factor of A(s). That is

:ID(s)dC(s)C(s) (S)l7+C(s)D(s):O(s)F(s)
2 L ds ds J

and A(s) = AI(s)F(s ). The order of Ys(s) is reduced again by one.

result of both these reductions is to give a Ya(s) of the form
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where ks

a suitable

s(>ss5 + _4s 4 _ ... + l)
Y_(s) -- k_ (BT)

(}",?S 7 + }",6$6 :- ... + 1)

is a constant. Follo_;ing this _rocedure in numerical terms_

Yl(s) is found to be

Y1(s) : b_ + J__ z.o5_ + z (BS)
as + i 2.5s + i

and the accompanying Ya(s) is

Y2(s) : o.oo33_
s (2. DOs+l) (0. 243sS+0. 808s+1) (0.181sS+O. 678s+1)

(2.53s+l)(O.446sS+l.20s+l)(O.ll(IsS+O.476s+l)(O.O195sS+O.196s+l)

(Bg)
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